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Abstract 
Tweet are being created short text message and shared for both users and data analysts. Twitter which receive 

over 400 million tweets per day has emerged as an invaluable source of news, blogs, opinions and more. our  

proposed work consists three components tweet stream clustering  to cluster tweet using k-means cluster 

algorithm and second tweet cluster vector technique to generate rank summarization using greedy algorithm, 

therefore requires functionality which significantly differ from traditional summarization . in general, tweet 

summarization and third to detect and monitors the summary-based and volume based variation to produce 

timeline automatically from tweet stream. Implementing continuous tweet stream reducing a text document is 

however not an simple task, since a huge number of tweets are worthless, unrelated and raucous in nature, due 

to the social nature of tweeting. Further, tweets are strongly correlated with their posted instance and up-to-the-

minute tweets tend to arrive at a very fast rate. Efficiency—tweet streams are always very big in level, hence the 

summarization algorithm should be greatly capable; Flexibility—it should provide tweet summaries of random 

moment durations. (3) Topic evolution—it should routinely detect sub-topic changes and the moments that they 

happen. 
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I. INTRODUCTION 
Growing attractiveness of microblogging 

services such as Twitter, Weibo, and Tumblr has 

resulted in the explosion of the amount of short-text 

messages. Twitter, for instance, which receives over 

400 million tweets per day1 has emerged as an 

invaluable source of news, blogs, opinions, and more. 

Tweets, in their raw form, while being 

informative, can also be overwhelming. For instance, 

search for a hot topic in Twitter may yield millions of 

tweets, spanning weeks. Even if filtering is allowed, 

plowing through so many tweets for important 

contents would be a nightmare, not to mention the 

enormous amount of noise and redundancy that one 

might encounter. To make things worse, new tweets 

satisfying the filtering criteria may arrive 

continuously, at an unpredictable rate. One possible 

solution to information overload problem is 

summarization. Summarization represents restating 

of the main ideas of the text in as few words as 

possible Intuitively, a good summary should cover 

the main topics (or subtopics) and have diversity 

among the sentences to reduce redundancy. 

Summarization is widely used in comfortable 

arrangement, specially when users surf the internet 

with their mobile devices which have much lesser 

screens than PCs.  Traditional document 

summarization approaches, however, are not as 

effective in the situation of tweets given both the big  

size of tweets as well as the fast and continuous 

nature of their arrival. Tweet summarization, 

therefore, requires functionalities which significantly 

differ from traditional summarization. In general, 

tweet summarization has to take into consideration 

the temporal feature of the arriving tweets. Consider 

a user interested in a topic-related tweet stream, for 

example, tweets about ―Apple‖. A tweet 

summarization system will continuously monitor 

―Apple‖ related tweets producing a real-time timeline 

of the tweet stream. a user may explore tweets based 

on a timeline (e.g., ―Apple‖ tweets posted between 

October  to November). Given a timeline range, the 

document system may generate a series of current 

time summaries to highlight points where the 

topic/subtopics evolved in the stream. Such a system 

will effectively enable the user to learn major news/ 

discussion related to ―Apple‖ without having to read 

through the entire tweet stream. Given the big picture 

about topic evolution about ―Apple‖, a user may 

decide to zoom in to get a more detailed report for a 

smaller duration (e.g., from three hour) system may 

provide a drill-down summary of the duration that 

enables the user to get additional details for that 

duration. Such application would not only facilitate 

easy navigation in topic-relevant tweets, but also 

support a range of data analysis tasks such as instant 

reports or historical survey.  

 

II. Twitter Summarization 
2.1 Stream Data Clustering 

The tweet stream clustering module maintains 

the online statistical data. Given a topic-based tweet 
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stream, it is able to efficiently cluster the tweets and 

maintain compact cluster information a scalable 

clustering framework which selectively stores 

important portions of the data, and compresses or 

discards other portions. CluStream  is one of the most 

classic stream clustering methods. It consists of an 

online micro-clustering component and an offline 

macro-clustering component. A variety of services on 

the Web such as news filtering, text crawling, and 

topic detecting etc. have posed requirements for text 

stream clustering CluStream to generate duration- 

based clustering results for text and categorical data 

streams. However, this algorithm relies on an online 

phase to generate a large number of ―micro-clusters‖ 

and an offline phase to re-cluster them. In contrast, 

our tweet stream clustering algorithm is an online 

procedure without extra offline clustering. And in the 

context of tweet summarization, we adapt the online 

clustering phase by incorporating the new structure 

TCV, and restricting the number of clusters to 

guarantee efficiency and the quality of TCVs. 

 

2.1 Tweet Stream Initialization 

At the start of the stream, we collect a small 

number of tweets and use a k-means clustering 

algorithm to create the initial clusters. The 

corresponding TCVs are initialized according to 

Definition 1. Next, the stream clustering process 

starts to incrementally update the TCVs whenever a 

new tweet arrives. 

 

2.2 Incremental Clustering 

Suppose a tweet t arrives at time ts, and there are 

N active clusters at that time. The key problem is to 

decide whether to attract  into one of the in progress 

clusters or advance t as a new cluster. We first find 

the cluster whose centroid is the closest to t. 

Specifically, we get the centroid of each cluster based 

on Equation (1), compute its cosine similarity to t, 

and find the cluster Cp with the largest similarity.  

 

2.3 Deleting Outdated Clusters 

For most events (such as news, football matches 

and concerts) in tweet streams, timeliness is 

important because they usually do not last for a long 

time. Therefore it is safe to delete the clusters 

representing these sub-topics when they are rarely 

discussed. To find out such clusters, an intuitive way 

is to estimate the average arrival time (denoted as 

Avgp) of the last p percent of tweets in a cluster. 

However, storing p percent of tweets for every cluster 

will increase memory costs, especially when clusters 

grow big. Thus, we employ an approximate method 

to get Avgp. 

 

2.4 Merging Clusters 

If the number of clusters keeps increasing with 

few deletions, system memory will be exhausted. To 

avoid this, we specify an upper limit for the number 

of clusters as Nmax.  When the limit is reached, a 

merging process starts. The process merges clusters 

in a greedy way. First, we sort all cluster pairs by 

their centroid similarities in a descending order. 

Then, starting with the most similar pair, we try to 

merge two clusters in it. When both clusters are 

single clusters which have not been merged with 

other clusters, they are merged into a new composite 

cluster. When one of them belongs to a composite 

cluster (it has been merged with others before), the 

other is also merged into that composite cluster. 

When both of them have been merged, if they belong 

to the same composite cluster, this pair is skipped; 

otherwise, the two composite clusters are merged 

together. This process continues until there are only 

mc percentage of the original clusters left (mc is a 

merging coefficient which provides a balance 

between available memory space and the quality of 

remaining clusters). 

 
Fig.1. The Frame Work Of Sumblr 

 

III. Related Work 
3.1 High-Level Summarization 

The high-level summarization module provides 

two types of summaries: online and historical 

summaries. An online summary describes what is 

currently discussed among the public. Thus, the input 

for generating online summaries is retrieved directly 

from the current clusters maintained in memory. On 

the other hand, a historical summary helps people 

understand the main happenings during a specific 

period,which means we need to eliminate the 

influence of tweet contents from the outside of that 

period. As a result, retrieval of the required 

information for generating historical summaries is 
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more complicated, and this shall be our focus in the 

following discussion. Suppose the length of a user-

defined time duration is H, and the ending timestamp 

of the duration is tse. 

 

IV. Document/Microblog Summarization 
Document summarization can be categorized as 

extractive and abstractive. The former selects 

sentences from the documents, while the latter may 

generate phrases and sentences that do not appear in 

the original documents. In this paper, we focus on 

extractive summarization. Extractive document 

summarization has received a lot of recent attention. 

Most of them assign salient scores to sentences of the 

documents, and select the top-ranked sentences.  

Some works try to extract summaries without such 

salient scores. the symmetric non-negative matrix 

factorization to cluster sentences and choose 

sentences in each cluster for summarization. 

proposed to summarize documents from the 

perspective of data reconstruction, and select 

sentences that can best reconstruct the original 

documents. In modeled documents (hotel reviews) as 

multi-attribute uncertain data and optimized a 

probabilistic coverage problem of the summary There 

have also been studies on summarizing microblogs 

for some specific types of events, e.g., sports events. 

proposed to identify the participants of events, and 

generate summaries based on sub-events detected 

from each participant. introduced a solution by 

learning the underlying hidden state representation of 

the event, which needs to learn from previous events  

(football games) with similar structure. In 

summarized events by exploiting ―good reporters‖, 

depending on event-specific keywords which need to 

be given in advance. In contrast, we aim to deal with 

general topic-relevant tweet streams without such 

prior knowledge. Moreover, their method stores all 

the tweets in each segment and selects a single tweet 

as the summary, while our method maintains distilled 

information in TCVs to reduce storage/ computation 

cost, and generates multiple tweet summaries in 

terms of content coverage and novelty. In addition to 

online summarization, our method also supports 

historical summarization by maintaining TCV 

snapshots. 

 

V. Timeline Detection 
The demand for analyzing massive contents in 

social medias fuels the developments in visualization 

techniques. Timeline is one of these techniques 

which can make analysis tasks easier and faster. 

presented a timeline-based backchannel for 

conversations around events. proposed the 

evolutionary timeline summarization (ETS) to 

compute evolution timelines similar to ours, which 

consists of a series of time-stamped summaries. the 

dates of summaries are determined by a pre-defined 

timestamp set. In contrast, our method discovers the 

changing dates and generates timelines dynamically 

during the process of continuous summarization. 

Moreover, ETS does not focus on efficiency and 

scalability issues, which are very important in our 

streaming context. Several systems detect important 

moments when rapid increases or ―spikes‖ in status 

update volume happen. Developed an algorithm 

based on TCP congestion detection, employed a 

slope-based method to find spikes. After that, tweets 

from each moment are identified, and word clouds or 

summaries are selected. Different from this two-step 

approach, our method detects topic evolution and 

produces summaries/timelines in an online fashion. 

 

TABLE 1 

BASIC INFORMATION OF DATASET 

 
 

5.1 Summary-Based Variation 

As tweets arrive from the stream, online 

summaries are produced continuously by utilizing 

online cluster statistics in TCVs. This allows for 

generation of a real-time timeline. Generally, when 

an obvious variation occurs in the main contents 

discussed in tweets (in the form of summary), we can 

expect a change of sub-topic (i.e., a time node on the 

timeline). To quantify the variation, we use the 

divergence to measure the distance between two 

word distributions in two successive summaries Sc 

and Sp (Sc is the distribution of the current summary 

and Sp is that of the previous one) 

 

5.2 Volume-Based Variation 

Though the summary-based variation can reflect 

sub-topic changes, some of them may not be 

influential enough. Since many tweets are related to 

users’ daily life or trivial events, a sub-topic change 

detected from textual contents may not be significant 

enough. To this end, we consider the use of rapid 

increases (or ―spikes‖) in the volume of tweets over 

time, which is a common technique in existing online 

event detection systems . A spike suggests that 

something essential in a minute happened because a 

lot of people found the need to comment on it. In this 

part, we develop a spike-finding method. As the 

input, the binning process in Algorithm needs to 

count the tweet arrival volume in each time unit.  

 

5.1 Experiments for Summarization 

5.1.1 Over All Performance Comparison 

We construct five data sets to evaluate 

summarization. One is obtained by conducting 

keyword filtering on a large Twitter data set. The 
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other four include tweets acquired during one month 

in 2015 via Twitter’s keyword tracking. 

 

Baseline methods: In Existing summarization 

methods have not been designed to handle continuous 

summarization. In this way, here implement the 

sliding window version of the above three 

algorithms, namely Cluster Sum, LexRank, and 

DSDR. 

In our experiments, we find similar trends in the 

comparison of precision, recall and F-score between 

the proposed  approach and the baseline methods. 

 
Fig .2.Scalability on data size 

 

VI. CONCLUSION 
We proposed a prototype called Sumblr which 

supported continuous tweet stream summarization. 

Sumblr employs a tweet stream clustering algorithm 

to compress tweets into TCVs and maintains them in 

an online fashion. Then, it uses a TCV-Rank 

summarization algorithm for generating online 

summaries and historical summaries with arbitrary 

time durations. The topic evolution can be detected 

automatically, allowing Sumblr to produce dynamic 

timelines for  tweet streams. The experimental results 

make obvious the competence and success of our 

method. For future work, we aim to develop a multi-

topic version of Sumblr in a spread system, and 

estimate it on more complete and large-scale data 

sets. 
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