
K.Selvaraj Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 11, (Part - 4) November 2015, pp.11-14

 www.ijera.com 11 | P a g e

Topic Evolutionary Tweet Stream Clustering Algorithm and TCV

Rank Summarization

K.Selvaraj
1
, S.Balaji

2

Department of computer science and engineering, Akshaya college of engineering and technology, India

Abstract
Tweet are being created short text message and shared for both users and data analysts. Twitter which receive

over 400 million tweets per day has emerged as an invaluable source of news, blogs, opinions and more. our

proposed work consists three components tweet stream clustering to cluster tweet using k-means cluster

algorithm and second tweet cluster vector technique to generate rank summarization using greedy algorithm,

therefore requires functionality which significantly differ from traditional summarization . in general, tweet

summarization and third to detect and monitors the summary-based and volume based variation to produce

timeline automatically from tweet stream. Implementing continuous tweet stream reducing a text document is

however not an simple task, since a huge number of tweets are worthless, unrelated and raucous in nature, due

to the social nature of tweeting. Further, tweets are strongly correlated with their posted instance and up-to-the-

minute tweets tend to arrive at a very fast rate. Efficiency—tweet streams are always very big in level, hence the

summarization algorithm should be greatly capable; Flexibility—it should provide tweet summaries of random

moment durations. (3) Topic evolution—it should routinely detect sub-topic changes and the moments that they

happen.

Keywords: Tweet Stream, summarization, Timeline, Topic evolution,summary.

I. INTRODUCTION
Growing attractiveness of microblogging

services such as Twitter, Weibo, and Tumblr has

resulted in the explosion of the amount of short-text

messages. Twitter, for instance, which receives over

400 million tweets per day1 has emerged as an

invaluable source of news, blogs, opinions, and more.

Tweets, in their raw form, while being

informative, can also be overwhelming. For instance,

search for a hot topic in Twitter may yield millions of

tweets, spanning weeks. Even if filtering is allowed,

plowing through so many tweets for important

contents would be a nightmare, not to mention the

enormous amount of noise and redundancy that one

might encounter. To make things worse, new tweets

satisfying the filtering criteria may arrive

continuously, at an unpredictable rate. One possible

solution to information overload problem is

summarization. Summarization represents restating

of the main ideas of the text in as few words as

possible Intuitively, a good summary should cover

the main topics (or subtopics) and have diversity

among the sentences to reduce redundancy.

Summarization is widely used in comfortable

arrangement, specially when users surf the internet

with their mobile devices which have much lesser

screens than PCs. Traditional document

summarization approaches, however, are not as

effective in the situation of tweets given both the big

size of tweets as well as the fast and continuous

nature of their arrival. Tweet summarization,

therefore, requires functionalities which significantly

differ from traditional summarization. In general,

tweet summarization has to take into consideration

the temporal feature of the arriving tweets. Consider

a user interested in a topic-related tweet stream, for

example, tweets about ―Apple‖. A tweet

summarization system will continuously monitor

―Apple‖ related tweets producing a real-time timeline

of the tweet stream. a user may explore tweets based

on a timeline (e.g., ―Apple‖ tweets posted between

October to November). Given a timeline range, the

document system may generate a series of current

time summaries to highlight points where the

topic/subtopics evolved in the stream. Such a system

will effectively enable the user to learn major news/

discussion related to ―Apple‖ without having to read

through the entire tweet stream. Given the big picture

about topic evolution about ―Apple‖, a user may

decide to zoom in to get a more detailed report for a

smaller duration (e.g., from three hour) system may

provide a drill-down summary of the duration that

enables the user to get additional details for that

duration. Such application would not only facilitate

easy navigation in topic-relevant tweets, but also

support a range of data analysis tasks such as instant

reports or historical survey.

II. Twitter Summarization
2.1 Stream Data Clustering

The tweet stream clustering module maintains

the online statistical data. Given a topic-based tweet

RESEARCH ARTICLE OPEN ACCESS

K.Selvaraj Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 11, (Part - 4) November 2015, pp.11-14

 www.ijera.com 12 | P a g e

stream, it is able to efficiently cluster the tweets and

maintain compact cluster information a scalable

clustering framework which selectively stores

important portions of the data, and compresses or

discards other portions. CluStream is one of the most

classic stream clustering methods. It consists of an

online micro-clustering component and an offline

macro-clustering component. A variety of services on

the Web such as news filtering, text crawling, and

topic detecting etc. have posed requirements for text

stream clustering CluStream to generate duration-

based clustering results for text and categorical data

streams. However, this algorithm relies on an online

phase to generate a large number of ―micro-clusters‖

and an offline phase to re-cluster them. In contrast,

our tweet stream clustering algorithm is an online

procedure without extra offline clustering. And in the

context of tweet summarization, we adapt the online

clustering phase by incorporating the new structure

TCV, and restricting the number of clusters to

guarantee efficiency and the quality of TCVs.

2.1 Tweet Stream Initialization

At the start of the stream, we collect a small

number of tweets and use a k-means clustering

algorithm to create the initial clusters. The

corresponding TCVs are initialized according to

Definition 1. Next, the stream clustering process

starts to incrementally update the TCVs whenever a

new tweet arrives.

2.2 Incremental Clustering

Suppose a tweet t arrives at time ts, and there are

N active clusters at that time. The key problem is to

decide whether to attract into one of the in progress

clusters or advance t as a new cluster. We first find

the cluster whose centroid is the closest to t.

Specifically, we get the centroid of each cluster based

on Equation (1), compute its cosine similarity to t,

and find the cluster Cp with the largest similarity.

2.3 Deleting Outdated Clusters

For most events (such as news, football matches

and concerts) in tweet streams, timeliness is

important because they usually do not last for a long

time. Therefore it is safe to delete the clusters

representing these sub-topics when they are rarely

discussed. To find out such clusters, an intuitive way

is to estimate the average arrival time (denoted as

Avgp) of the last p percent of tweets in a cluster.

However, storing p percent of tweets for every cluster

will increase memory costs, especially when clusters

grow big. Thus, we employ an approximate method

to get Avgp.

2.4 Merging Clusters

If the number of clusters keeps increasing with

few deletions, system memory will be exhausted. To

avoid this, we specify an upper limit for the number

of clusters as Nmax. When the limit is reached, a

merging process starts. The process merges clusters

in a greedy way. First, we sort all cluster pairs by

their centroid similarities in a descending order.

Then, starting with the most similar pair, we try to

merge two clusters in it. When both clusters are

single clusters which have not been merged with

other clusters, they are merged into a new composite

cluster. When one of them belongs to a composite

cluster (it has been merged with others before), the

other is also merged into that composite cluster.

When both of them have been merged, if they belong

to the same composite cluster, this pair is skipped;

otherwise, the two composite clusters are merged

together. This process continues until there are only

mc percentage of the original clusters left (mc is a

merging coefficient which provides a balance

between available memory space and the quality of

remaining clusters).

Fig.1. The Frame Work Of Sumblr

III. Related Work
3.1 High-Level Summarization

The high-level summarization module provides

two types of summaries: online and historical

summaries. An online summary describes what is

currently discussed among the public. Thus, the input

for generating online summaries is retrieved directly

from the current clusters maintained in memory. On

the other hand, a historical summary helps people

understand the main happenings during a specific

period,which means we need to eliminate the

influence of tweet contents from the outside of that

period. As a result, retrieval of the required

information for generating historical summaries is

K.Selvaraj Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 11, (Part - 4) November 2015, pp.11-14

 www.ijera.com 13 | P a g e

more complicated, and this shall be our focus in the

following discussion. Suppose the length of a user-

defined time duration is H, and the ending timestamp

of the duration is tse.

IV. Document/Microblog Summarization
Document summarization can be categorized as

extractive and abstractive. The former selects

sentences from the documents, while the latter may

generate phrases and sentences that do not appear in

the original documents. In this paper, we focus on

extractive summarization. Extractive document

summarization has received a lot of recent attention.

Most of them assign salient scores to sentences of the

documents, and select the top-ranked sentences.

Some works try to extract summaries without such

salient scores. the symmetric non-negative matrix

factorization to cluster sentences and choose

sentences in each cluster for summarization.

proposed to summarize documents from the

perspective of data reconstruction, and select

sentences that can best reconstruct the original

documents. In modeled documents (hotel reviews) as

multi-attribute uncertain data and optimized a

probabilistic coverage problem of the summary There

have also been studies on summarizing microblogs

for some specific types of events, e.g., sports events.

proposed to identify the participants of events, and

generate summaries based on sub-events detected

from each participant. introduced a solution by

learning the underlying hidden state representation of

the event, which needs to learn from previous events

(football games) with similar structure. In

summarized events by exploiting ―good reporters‖,

depending on event-specific keywords which need to

be given in advance. In contrast, we aim to deal with

general topic-relevant tweet streams without such

prior knowledge. Moreover, their method stores all

the tweets in each segment and selects a single tweet

as the summary, while our method maintains distilled

information in TCVs to reduce storage/ computation

cost, and generates multiple tweet summaries in

terms of content coverage and novelty. In addition to

online summarization, our method also supports

historical summarization by maintaining TCV

snapshots.

V. Timeline Detection
The demand for analyzing massive contents in

social medias fuels the developments in visualization

techniques. Timeline is one of these techniques

which can make analysis tasks easier and faster.

presented a timeline-based backchannel for

conversations around events. proposed the

evolutionary timeline summarization (ETS) to

compute evolution timelines similar to ours, which

consists of a series of time-stamped summaries. the

dates of summaries are determined by a pre-defined

timestamp set. In contrast, our method discovers the

changing dates and generates timelines dynamically

during the process of continuous summarization.

Moreover, ETS does not focus on efficiency and

scalability issues, which are very important in our

streaming context. Several systems detect important

moments when rapid increases or ―spikes‖ in status

update volume happen. Developed an algorithm

based on TCP congestion detection, employed a

slope-based method to find spikes. After that, tweets

from each moment are identified, and word clouds or

summaries are selected. Different from this two-step

approach, our method detects topic evolution and

produces summaries/timelines in an online fashion.

TABLE 1

BASIC INFORMATION OF DATASET

5.1 Summary-Based Variation

As tweets arrive from the stream, online

summaries are produced continuously by utilizing

online cluster statistics in TCVs. This allows for

generation of a real-time timeline. Generally, when

an obvious variation occurs in the main contents

discussed in tweets (in the form of summary), we can

expect a change of sub-topic (i.e., a time node on the

timeline). To quantify the variation, we use the

divergence to measure the distance between two

word distributions in two successive summaries Sc

and Sp (Sc is the distribution of the current summary

and Sp is that of the previous one)

5.2 Volume-Based Variation

Though the summary-based variation can reflect

sub-topic changes, some of them may not be

influential enough. Since many tweets are related to

users’ daily life or trivial events, a sub-topic change

detected from textual contents may not be significant

enough. To this end, we consider the use of rapid

increases (or ―spikes‖) in the volume of tweets over

time, which is a common technique in existing online

event detection systems . A spike suggests that

something essential in a minute happened because a

lot of people found the need to comment on it. In this

part, we develop a spike-finding method. As the

input, the binning process in Algorithm needs to

count the tweet arrival volume in each time unit.

5.1 Experiments for Summarization

5.1.1 Over All Performance Comparison

We construct five data sets to evaluate

summarization. One is obtained by conducting

keyword filtering on a large Twitter data set. The

K.Selvaraj Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 11, (Part - 4) November 2015, pp.11-14

 www.ijera.com 14 | P a g e

other four include tweets acquired during one month

in 2015 via Twitter’s keyword tracking.

Baseline methods: In Existing summarization

methods have not been designed to handle continuous

summarization. In this way, here implement the

sliding window version of the above three

algorithms, namely Cluster Sum, LexRank, and

DSDR.

In our experiments, we find similar trends in the

comparison of precision, recall and F-score between

the proposed approach and the baseline methods.

Fig .2.Scalability on data size

VI. CONCLUSION
We proposed a prototype called Sumblr which

supported continuous tweet stream summarization.

Sumblr employs a tweet stream clustering algorithm

to compress tweets into TCVs and maintains them in

an online fashion. Then, it uses a TCV-Rank

summarization algorithm for generating online

summaries and historical summaries with arbitrary

time durations. The topic evolution can be detected

automatically, allowing Sumblr to produce dynamic

timelines for tweet streams. The experimental results

make obvious the competence and success of our

method. For future work, we aim to develop a multi-

topic version of Sumblr in a spread system, and

estimate it on more complete and large-scale data

sets.

References
[1] C. C. Aggarwal, J. Han, J. Wang, and P. S.

Yu, ―A framework for clustering evolving

data streams,‖ in Proc. 29th Int. Conf.

VeryLarge Data Bases, 2003, pp. 81–92.

[2] T. Zhang, R. Ramakrishnan, and M. Livny,

―BIRCH: An efficient data clustering

method for very large databases,‖ in Proc.

ACM SIGMOD Int. Conf. Manage. Data,

1996, pp. 103–114.

[3] P. S. Bradley, U. M. Fayyad, and C. Reina,

―Scaling clustering algorithms to large

databases,‖ in Proc. Knowl. Discovery Data

Mining, 1998, pp. 9–15.

[4] L. Gong, J. Zeng, and S. Zhang, ―Text

stream clustering algorithm based on

adaptive feature selection,‖ Expert Syst.

Appl., vol. 38, no. 3, pp. 1393–1399, 2011.

[5] Q. He, K. Chang, E.-P. Lim, and J. Zhang,

―Bursty feature representation for clustering

text streams,‖ in Proc. SIAM Int. Conf. Data

Mining, 2007, pp. 491–496.

[6] J. Zhang, Z. Ghahramani, and Y. Yang, ―A

probabilistic model for online document

clustering with application to novelty

detection,‖ in Proc. Adv. Neural Inf.

Process. Syst., 2004, pp. 1617–1624.

[7] S. Zhong, ―Efficient streaming text

clustering,‖ Neural Netw., vol. 18, nos. 5/6,

pp. 790–798, 2005.

[8] C. C. Aggarwal and P. S. Yu, ―On clustering

massive text and categorical data streams,‖

Knowl. Inf. Syst., vol. 24, no. 2, pp. 171–

196, 2010.

[9] R. Barzilay and M. Elhadad, ―Using lexical

chains for text summarization,‖ in Proc.

ACL Workshop Intell. Scalable Text

Summarization, 1997, pp. 10–17.

[10] W.-T. Yih, J. Goodman, L. Vanderwende,

and H. Suzuki, ―Multidocument

summarization by maximizing informative

contentwords,‖ in Proc. 20th Int. Joint Conf.

Artif. Intell., 2007, pp. 1776–1782.

Balaji Subramani currently working as

Assistant Professor in Akshaya College of

Engineering and Technology. He has 4 years of

Teaching Experience. He did his Master Degree

M.Tech (IT) in K.S.Rangasamy College of

Technology. He has participated in various

International Conferences and workshops held at

different places. His area of interest includes Word

sense disambiguation, web mining, Information

retrieval and social network analysis.

Selvaraj Kumarasamy currently

pursuing Master degree in computer science and

engineering in Akshaya College of Engineering and

Technology. I Was participated in various

International Conferences and workshops held at

different places. I did my research work in data

mining .

